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ABSTRACT

Timbre can affect our subjective experience of musi-
cal dissonance and harmonic progression. To this end,
we have developed a set of algorithms to measure rough-
ness (sensory dissonance), and pitch correlation between
sonorities, taking into account the effects of timbre and
microtonal inflection. We proceed from the work of
Richard Parncutt and Ernst Terhardt, extending their algo-
rithms for the psychoacoustic analysis of harmony to in-
clude spectral data from actual instrumental sounds. This
allows for the study of a much wider variety of timbrally-
rich acoustic or electronic sounds which was not possible
with the previous algorithms. Further, we generalize these
algorithms by working directly with frequency rather than
a tempered division of the octave, making them available
to the full range of microtonal harmonies. The new algo-
rithms, by yielding different roughness estimates depend-
ing on the orchestration of a sonority, confirm our intu-
itive understanding that orchestration affects sensory dis-
sonance. This package of tools presents rich possibilities
for composition and analysis of music that is timbrally-
dynamic and microtonally-complex.

1. INTRODUCTION

Beginning in the 1970’s Ernst Terhardt proposed a psy-
choacoustic model of harmony [8, 9, 10]. Proceeding from
Rameau and Helmholtz, he described “musical
consonance” as the product of the co-operative perception
of “sensory consonance” (the absence of sensory disso-
nance, or roughness) and “harmony” (or harmonicity, the
similarity of a sound to a harmonic series) [9].

Musicologist Richard Parncutt has further extended and
developed Terhardt’s theory [3, 4] . In particular, Parncutt
describes a measure of roughness of individual sonorities
and of pitch commonality between two sonorities. Al-
though other harmonic theories have taken perceptual data
into account, a major advantage of Parncutt’s algorithms is
that they avoid biases towards pre-existing musical styles
or techniques, with the exception that they are designed
for equally-termpered music. Therefore they are promis-
ing tools for the composition and analysis of new, percep-
tually coherent, post-tonal music.

However, the work of Terhardt and Parncutt accounts
for instrumental timbre in only a limited way. Composers

and analysts have become increasingly interested in tim-
bre as a conveyor of musical meaning. It has long been
acknowledged that timbre and orchestration have effects
on our perception of dissonance and even harmonic rela-
tionships [7]. However, no harmonic theory has attempted
to quantify these differences. Currently a variety of tools,
such as Diphone and AudioSculpt, are available to cre-
ate acoustical analyses in the versatile Sound Description
Interchange Format (SDIF) [11]. Using SDIF data, we
extend Terhardt’s and Parncutt’s measures to take timbre
into account.

2. ACCOUNTING FOR TIMBRE

2.1. Virtual Fundamental

According to Terhardt, our ability to match a sonority to
the harmonic series is one of the components of our per-
ception of musical consonance [8]. In the terminology of
Parncutt, by matching the pure tones of a sonority to an
harmonic model, we may sense a complex tone, or virtual
fundamental. The higher the frequency of the virtual fun-
damental, and the better its harmonics match the sonor-
ity, the more harmonic the sonority. Terhardt’s algorithm
[10] does not require adjustment to account for instru-
mental timbre or microtonal frequencies. But we propose
inputting to the algorithm not merely an idealized list of
pitches, but a list of timbrally-complex sounds each with
many pure-tone components. For example, we can take
several instrumental notes, each with its own spectrum,
and ask what is the virtual fundamental of the spectra to-
gether.

2.2. Sensory Dissonance

Parncutt built into his model a rudimentary framework
for including the effects of timbre, distinguishing between
only three types of tones: pure-tones, harmonic-complex
tones, and octave-spaced (Shepard) tones. The harmonic-
complex tones are meant to model a general instrument
timbre—they contain the first 10 partials of the harmonic
series (rounded to semitones) with a roll-off that varies
as the inverse of the partial number. Although these gen-
eralized timbres already give roughness data that corre-
spond to our psychoacoustic experience better than pure



tones, we can include timbre in a more flexible and faith-
ful way. Rather than using a prescribed overtone series to
model each pitch of an instrumental chord, we use specific
data from spectral analyses of sampled instruments stored
in SDIF files. A chord orchestrated for diverse instru-
ments can be simulated by combining the SDIF data from
these instruments. We further revise Parncutt’s algorithm
to treat the precise frequencies of the partials of com-
plex tones, rather than rounding them to equally-tempered
pitches. We also do not limit our calculation to 10 partials;
instead we include all partial data available from spec-
tral analysis. One reason Parncutt uses only 10 partials
is that the 11th partial is poorly-approximated by semi-
tones [3]. By avoiding equal-temperament , we eliminate
this problem. Including an unlimited number of partials
allows for a finer measure of the interaction of complex
tones. And by using precise frequencies rather than ideal-
ized harmonics, we leave open the possibility of analyzing
sounds that contain inharmonic spectra, for example bells
or electronically-generated sounds.

2.3. Successive Pitch Relationships

A major extension Parncutt makes to Terhardt’s theory is
in the consideration of successive pitch relationships. In
doing this he seeks a perceptual groundwork by which
we can understand existing traditions of voice leading and
harmonic progression and extend them to post-tonal mu-
sic. However a limitation of the algorithm is that it is de-
signed for equally-tempered music. Such a theory would
be especially useful for microtonal music, as there have
been fewer studies of the progression between microtonal
harmonies. By revising Parncutt’s chord distance algo-
rithm to take microtonal frequencies into account, we take
advantage of a powerful feature latent in the theory.

3. IMPLEMENTATION OF ALGORITHMS

3.1. Roughness

Roughness (sensory dissonance) is the beating sensation
produced by the interaction of two or more components
that are sensed within a certain distance in the inner ear.
This distance is referred to as the “critical bandwidth” and
varies with frequency. Following Parncutt [3], to calculate
the degree of roughness between two pitches, we first cal-
culate the critical bandwidth for the area around the mean
frequency

Wcb = 1.72
(
f0.65

m

)
(1)

where fm = (f1 + f2) /2. We then define the roughness
of a sonority as the sum of the roughness of each pair of
components

ρ =
n∑

j=0

n−1∑
k=1

aj · ak · g(fcb)
a2

j

(2)

where aj and ak are the amplitudes of the components
and fcb is the distance between f1 and f2 in critical band-
widths. g(fcb) is a ‘standard curve’ 1 developed by Parn-
cutt 2 and defined by

g(fcb) =
(
e(fcb/0.25) · e(−fcb/0.25)

)2

, fcb < 1.2 (3)

3.2. Correlation

In order to measure the harmonic correlation between two
chords, using the technique adapted from Parncutt, we
must first adjust the chords to take masking into account.

3.2.1. Masking

When two sounds lie within approximately three critical
bands, the louder of the two will mask the other. Moore
and Glasberg [2] define the following function for equiva-
lent rectangular bandwidth rate (ERB-rate) or what Parn-
cutt refers to as pure-tone height

Hp(f) = H1 loge

(
f + f1

f + f2

)
+ H0 (4)

where f is frequency in kHz and H1 = 11.17, H0 = 43.0,
f1 = 0.312 kHz, and f2 = 14.675 kHz 3 .

The next step is to calculate the auditory level ΥL(f)
of each pure-tone component which is defined as the level
relative to the threshold of audibility in dB (sound pres-
sure level, SPL). This threshold, formulated by Terhardt
et al. [10] is

LTH = 3.64f−0.8 − 6.5e−0.6(f−3.3)2 + 10−3f4 (5)

where f is frequency in kHz. From there, we can calculate
the auditory level as follows

ΥL(f) = max{SPL(f) − LTH ; 0} (6)

where SPL(f) is the level of f in dB (SPL) and the max
function ensures that the result will not drop below zero 4 .

The degree to which one pure-tone component of a
sonority masks another is defined by

ml(f, f ′) = ΥL(f ′) − kM |Hp(f ′) − Hp(f)| (7)

where kM is the masking gradient which, should be set to
a value between 12 and 18 dB. Next, because one maskee
could be masked simultaneously by several maskers, we
must calculate the overall masking level of a given pure-
tone component.

ML(f) = max{20 log10

∑
f 6=f ′

10ml(f,f ′)/20; 0} (8)

1 Parncutt’s standard curve approximates the experimental data col-
lected by Plomp and Levelt [5]

2 This curve is not published, but found in the C code available
for download from Richard Parncutt’s website: http://www-gewi.uni-
graz.at/staff/parncutt/

3 These parameters were chosen by Moore and Glasberg [2] by fitting
experimental ERB estimates using non-linear regression.

4 In Parncutt’s work, this formula is ΥL(P ) = max{SPL(P ) −
LTH ; 0} where P is the pitch category in semitones. We have substi-
tuted f (frequency) for P here and the formulas to follow.



The audible level of a pure-tone component is defined
as its level above masked threshold

AL(f) = max{ΥL(f) − ML(f); 0} (9)

which, as it increases, causes the audibility of the pure-
tone component to saturate (approach 1):

Ap(f) = 1 − e

“
−AL(f)

AL0

”
. (10)

In this formula, AL0 is set to 15dB due to experimen-
tal estimation by Hesse [1] and the subscript p stands for
pure-tone component.

The final stage in the simulation of masking effects is to
calculate the complex-tone audibility (Terhardt’s spectral
pitch weight). Complex-tone sensations occur when the
frequencies of the pure-tone components of a sonority are
harmonically related. Parncutt’s model searches for these
relationships using a template-matching technique. Like
Parncutt, we use as a template an harmonic series with
weights (Wn) which vary as the inverse of the harmonic
number. We also limit the template to 10 partials, although
we use an unlimited number of partials elsewhere in our
algorithm.

The continuous nature of frequency leaves us without
a discrete set of values over which to move our template.
This problem can be solved by deciding on a threshold
within which the components of the template are said to
‘match’ the pure-tone components. If one or more matches
are made, a calculation of complex-tone audibility is made
with the following formula, which we have rewritten from
Parncutt to use frequency:

Ac(f1) =
1
kt

(∑
n

√
WnAp(fn)

)2

. (11)

kt is meant to scale the model according to different
types of listening and takes on a value between 1 (holis-
tic listening) and 10 (analytic listening). Parncutt sets the
value at 3. Finally, if a complex-tone and a pure-tone over-
lap, we define the audibility (A(f)) as the stronger of the
two.

3.2.2. Pitch Correlation

The measurement of the correlation between sonorities
that Parncutt proposes is useful because it takes into ac-
count the probability of noticing each pitch of a given
sonority based on the effects of masking and the degree
to which the pitches are harmonically related. In order to
calculate this measure, we must first define two other mea-
sures: multiplicity and salience. The former is the number
of tones simultaneously noticed in a sound. This measure
takes into account not only the contents of the sonority,
but how the listener perceives them as well. An unscaled
estimate of multiplicity can be made by assuming that the

probability of noticing a pure-tone component is propor-
tional to the maximally-audible tone in a sonority:

M ′ =

∑
f

A(f)

Amax
. (12)

Salience is defined as the probability of noticing a pure-
tone component of a sonority:

S(f) =
A(f)
Amax

Mks

M ′ (13)

where ks is Parncutt’s “simultaneity perception parame-
ter” which takes on a value between 0 and 1, with 0 for
holistic or non-analytical listening and 1 for analytical lis-
tening. 0.5 is a typical value that fits the results of Parn-
cutt’s experiments.

We then calculate the pairwise cross-corellation of their
respective frequencies, weighted by pitch salience.

4. PRACTICAL EXAMPLES

An example of a musical use of the algorithms is taken
from Arnold Schoenberg’s Fünf Orchesterstücke, Op. 16,
“Farben.” The opening alternates between two orchestra-
tions of the same chord, creating a subtly-shifting klang-
farbenmelodie (tone-color melody). The first orchestra-
tion is for Flutes, Clarinet, Bassoon, and Viola, and the
second is for English Horn, Trumpet, Bassoon, Horn, and
Contrabass (Figure 1). Previous measures of dissonance
would not distinguish between these two orchestrations.
But by using partials extracted from a library of instru-
mental samples by AddAn, from the IRCAM package Di-
phone [6], differences in roughness can be measured. The
first orchestration yeilds a roughness value of 0.66, while
the second yeilds 1.21, on a scale of 0-7. This is in con-
trast to pure sine tones, which give 0.007. The low value
for sine tones reflects the fact that the chord contains in-
tervals mostly greater than a critical bandwidth apart, so
roughness comes mostly from the overtones of the writ-
ten pitches. The fact that the second orchestration is more
rough than the first corresponds to our experience of the
second chord, containing bright brass instruments, as more
dissonant than the first.
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Roughness: 0.66 1.21 0.007

Flute
Flute

Clarinet
Bassoon
Viola

English Horn
Trumpet

Bassoon
Horn
Bass

Sine tones

Figure 1. Orchestrations of the “Farben”
chord.

This roughness estimate increases with the number of
component frequencies present within a critical band.



While this provides a reasonable estimate for a relatively
small number of frequencies, it does not account for the
possibility with a larger density of frequencies, such as
a tone cluster, that amplitude fluctuations may cancel out
causing a sense of “smoothing”. We are currently devel-
oping an algorithm that takes this into account.

The same chords are used as an example of the pitch
correlation algorithm; unlike Parncutt’s algorithm, the al-
gorithm described above can vary with orchestration, even
when the pitch classes remain constant. For two sets of
harmonic sounds, like the two orchestrations of Schoen-
berg’s chord, the correlation is close to unity: 0.9997.
However, for more radically-different sounds the effect is
much stronger. When we reorchestrate the same chord
with spectra of sampled bells from the Sather tower at UC
Berkeley, which are inharmonic, we find a much lower
correlation: -0.0509. This highlights the fact that even
though two musical sounds look the same on paper, they
may have little correlation as actual sonorities. Therefore,
our algorithm is useful for navigating the wide variety
of timbres available to the modern acoustic or electronic
composer.

5. DISCUSSION

5.1. Equal-Temperament

The model Parncutt proposes is constrained by its reliance
on the equal-tempered division of the octave. For com-
posers and other musicians interested in spectral music,
other tuning systems such as just-intonation, or computer
music where temperament need not be considered, this
limitation proves problematic. In our revised model, a
sonority is input as a list of frequencies thereby allowing
the full continuum of frequency space to be used in the
analysis of harmony.

5.2. Timbre

We propose an environment where actual instrument tim-
bres can be included using SDIF files containing analy-
ses of those instrumental timbres. Unlike the few timbral
choices permitted by Parncutt’s algorithm, our algorithms
provide a more realistic and flexible model for consider-
ation of instrumental timbre. In particular, it allows dis-
tinctions to be made in the measurement of roughness for
the same harmonic structures modelled for different in-
struments.

5.3. Compositional Models

We are in the process of implementing our procedure in
an automated way using Open Music, such that an input
chord with specified orchestration can be used to query
a database of SDIF analyses and automatically produce
a composite list of frequencies. This tool could be used
compositionally, for example, as follows: a vocabulary
of sonorities (either instrumental or electronic) could be
input and classified according to roughness and virtual

fundamental. Pairwise chord correlations could be cal-
culated. The input sonorities could then be treated as an
harmonic space of possibilities for composition or impro-
visation, where the correlations between chords have psy-
choacoustic meaning. Novel harmonies could be interpo-
lated between input harmonies and new instrumentations
could be suggested based on specified parameters in the
space. These measures could therefore prove a vast re-
source of creative possibilities.
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