
New Tools for Aspect-Oriented Programming in Music and Media
Programming Environments

John MacCallum, Adrian Freed, David Wessel
Center for New Music and Audio Technologies

Department of Music
University of California, Berkeley

{john,adrian,wessel}@cnmat.berkeley.edu

ABSTRACT

Media/arts programming is often experimental and ex-
ploratory in nature and requiring a flexible development
environment to enable continually changing requirements
and to facilitate iterative design in which the development
of software impacts the design of a work of art, which
in turn produces new requirements for the software. We
discuss agile development as it relates to media/arts pro-
gramming. We present aspect-oriented programming and
its implementation in Max/MSP using Open Sound Con-
trol and the odot library as tool for mobilizing the benefits
of agile development.

1. INTRODUCTION

Media/arts programming is often speculative in nature and
its practice is closely related to that of agile development
[1] in the software engineering community. The follow-
ing principles constitute (with some slight modifications
for media/arts development) agile programming [2, 3]:

1. The person for whom the development is being done
(often oneself) should be satisfied through early and
continuous delivery of valuable software.

2. Welcome changing requirements, even late in de-
velopment. Agile processes embrace change as the
artist adapts his/her vision of the project based on
iterations of the software.

3. Deliver working software frequently.
4. Artists and developers must work together often

throughout the project.
5. Working systems are the primary measure of

progress.
6. Agile processes promote sustainable development.

The artists and developers should be able to main-
tain a constant pace indefinitely.

7. Continuous attention to technical excellence and
good design enhances agility.

8. Simplicity—the art of maximizing the amount of
work done—is essential.

Copyright: c©2014 John MacCallum et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

Of these principles, 2, 3, 6, and 7 are perhaps the most im-
portant for our purposes. Since the creation of a work of
art is a speculative process, a clear and well-defined spec-
ification for a piece of software is rarely possible. Itera-
tive development where the software is tested and evalu-
ated in the context of the piece being created is essential
to allow the software and the concept of the work of art to
co-evolve. To promote this type of exchange, the develop-
ment environment must be one that is flexible, not brittle,
and one that welcomes potentially drastic change as the
result of incremental use and evaluation. Aspect-oriented
programming can limber up the development environment
when used sparingly and judiciously.

1.1 Aspect-Oriented Programming

Before providing a description of aspect-oriented program-
ming, it is useful to introduce some terms that are used
throughout the literature [4].

1.1.1 Terminology

Cross-cutting concerns Aspects of a program that cut
across or are interwoven among many different parts
of a program (i.e., logging, debugging, etc.).

Advice Additional behavior applied to data in the context
of an aspect.

Join point A point in the control flow of a program—in
dataflow languages like Max/MSP, PD, or Ptolemy
II [5] 1 these points are the inlets and outlets of data
flow actors.

Pointcut A set of join points that may have advice associ-
ated with them.

1.1.2 Description

“Aspect-oriented programming (AOP) is a programming
methodology [which separates out] cross-cutting concerns
[. . . ] from the main code of the actions to which the con-
cerns apply.”[6] Some examples of cross-cutting concerns
that are useful in the context of real-time media/arts pro-
gramming are:

- Logging
- Visualization
- Structural analysis
- Commentary
- Scaffolding

1 http://ptolemy.eecs.berkeley.edu

http://creativecommons.org/licenses/by/3.0/
http://ptolemy.eecs.berkeley.edu


- Stream capture
- Performance profiling
- Debugging, printing, and tracing
- Input/Output validation and assertion
- Dynamic code injection without modifying existing

(possibly running) code
Most modules in a complex program will need some of

the features itemized above at some point in the develop-
ment process. AOP enables those elements of the program
to be injected when necessary and easily removed when
they are no longer needed without modifying the code to
which they are applied. AOP frees programmers from the
need to foresee functionality and often obviates the need
for programmers to revisit code to extend or modify its be-
havior. By providing each module with the proper hooks,
we can quickly and unobtrusively add additional behavior
(“advice”) at various points in the program (“join points”)
without modifying existing code. Further, AOP obviates
the need to remember many ad hoc systems for mundane
functionality such as printing to a debugging console.

2. SIMPLE EXAMPLE

Body

(a) Max abstraction

Body Advice

(b) Max abstraction with hooks

Figure 1: On the left, we see the typical dataflow through
an abstraction in Max. On the right, the use of o.in and
o.out to forward incoming and outgoing data to aspects.

In figure 1a, we see the skeleton of a module in Max,
while in figure 1b o.in and o.out provide join points where
advice can be applied. Data enters a module and is for-
warded by o.in to o.aspect.receive where advice is applied.
After processing, it is sent back to where it came from, in
this case o.in, by o.aspect.receive. o.in then forwards the
(possibly modified) data to the body of the Max module.
o.out behaves identically to o.in with the exception of its
contextual information.

3. APPLICATIONS

As programs grow in complexity, the need to understand
what is going on inside of submodules nested deep in the
program hierarchy can present serious difficulties. For ex-
ample, we may suspect that something is going wrong in a
module and wish to see the values that are being sent into
it as a way to determine whether the problem occurs inside
or outside the module. This requires one of two things:
a) modification to the existing module which, in the case of
Max and PD, carries with it the loss of any stored internal
state and the potential of introducing new bugs or behav-
ior that can impede the search for the bug, or b) foresight

during the initial implementation of the module resulting
in debugging components that will aid in our current situ-
ation.The former is cumbersome, and the latter, when gen-
eralized to all types of debugging situations, requires the
kind of forward thinking design that is particularly diffi-
cult in dynamic and speculative work.

One of the tenets of AOP is that the programmer should
be oblivious to future aspects that may be applied at a later
date, obviating the need for the programmer in our exam-
ple to predict future debugging situations. One must still
ensure that each inlet and outlet of the module is connected
to an o.in or o.out, but assuming those hooks are in place,
we may inspect the input to a module with the following
steps (see figure 2).

1. Create a new patch and instantiate o.aspect.receive.
2. Filter the stream of bundles based on the port type

(and possibly other contextual information).
3. Display the data in an appropriate way if it matches

the contextual criteria.
4. When the visualization is no longer necessary, save

the aspect in case it may be useful in the future, and
simply close the window. If it becomes useful again,
reopen it.

Figure 2: o.aspect.print

4. MAX/MSP IMPLEMENTATION

The implementation of AOP in Max that we introduce here
makes use of Open Sound Control [7] as a rich, composite
data type, and the odot library [8] for providing contex-
tual information and high-level processing of OSC data.
AOP is implemented in Max using a pair of Max “abstrac-
tions” or shims called o.in and o.out which are placed im-
mediately after and before each inlet and outlet in a mod-
ule, respectively. o.in and o.out are thin wrappers around
o.port which collects contextual information from its en-
vironment such as the name of the module it is in and the
name of the enclosing module, as well as the arguments
of those modules. This data is added to the OSC bundle
along with a “return address” and sent, using Max’s built-
in “send” object, to the global location “o.aspect”.

We provide two additional abstractions that aid in writ-
ing aspects: o.aspect.receive which simply wraps the built-
in “receive” object with the argument “o.aspect”, and
o.aspect.send which uses the return address to set the “for-
ward” object to send to that location (see figure 3).

To create an aspect in Max/MSP, one creates a new patch
and instantiates o.aspect.receive and o.aspect.send (both
with no arguments). o.aspect.receive will produce all mes-
sages sent to the location “o.aspect”. The bundle can
then be processed according to the advice that this par-
ticular aspect provides. Certain aspects may choose to



Figure 3: o.aspect.send

inject data into the bundle (e.g., profiling data) in which
case the aspect should send the modified bundle back us-
ing o.aspect.send. If no modifications are made, this step
may be skipped and a copy of the original bundle will be
produced after the join point.

The following sections describe the implementation of
o.port and o.aspect.joinpoint.

4.1 o.port

1

2

3

4

5

Figure 4: o.aspect.port

o.port (see figure 4) is responsible for gathering contex-
tual information about its environment, blending it into the
bundle, passing it to o.aspect.joinpoint, and outputting the
result. o.port is a general mechanism that makes use of
o.aspect.joinpoint and also serves as the location for imple-
menting other hooks to extend the functionality of a patch.

The following enumerated items correspond to those in
figure 4.

1. If the incoming data is not an OSC bundle, it is for-
warded on to the enclosing patch. Otherwise, it is
processed by o.port. For efficiency, we query the

environment to see if any aspects have been instan-
tiated and only proceed if so.

2. The port type, “in” or “out”, is bound to /o port/type
and blended into the incoming OSC stream.

3. The context information for this port is blended into
the incoming OSC stream.

4. The bundle is passed to the join point.
5. All contextual information is stripped off before out-

putting.

4.2 o.aspect.joinpoint

1

2

3

4

5

6

7

Figure 5: o.aspect.joinpoint

o.aspect.joinpoint (see figure 5) is responsible for dis-
patching incoming OSC bundles to any pointcuts that may
be instantiated. If no pointcuts are in place, a copy of the
bundle is simply passed through unchanged.

The following enumerated items correspond to those in
figure 5.

1. OSC bundles are processed and all other non-OSC
data is simply passed through untouched.

2. A copy of the incoming bundle is stored in o.collect.
This will be sent out if no data is returned, or a union
operation will be performed producing a bundle con-
taining the original data and any data added by any
aspects. After the bundle is passed to o.collect, it is
processed by the following steps.

3. A “return address” is created using the unique nu-
merical identifier created using the “#0” lexical sub-
stitution variable and blended into the OSC bundle.

4. Contextual information is generated using o.context
and blended into the OSC bundle.



5. The bundle is sent to the named global location
“o.aspect”.

6. If a bundle is received here, the “return address” is
removed and it is sent to o.collect which will com-
bine it with the original.

7. The bundle is output into the enclosing patch.

5. A MORE DETAILED EXAMPLE

1

2

3

5

4

Figure 6: A granular synthesizer that chooses the fre-
quency of each grain from a spectrum produced by
sigmund∼ using the amplitudes of each frequency com-
ponent as a probability distribution.

In this section, we use the implementation of a granular
synthesizer to discuss the use of aspects in the develop-
ment process. The granular synthesizer (figure 6) consists
of two parts: code that chooses the frequency of a grain,
and the code to sonify the grain. In this example, we take
the spectral output of Miller Puckette’s sigmund∼ exter-
nal 2 and choose frequencies at random from it using the
amplitudes as probabilities. This ensures that more grains
will be set to those components that had a greater ampli-
tude in the spectrum. The sonification can be done with
any suitable polyphonic synthesizer—in our case, we use a
simple enveloped sine wave. The following is a description
of each component of figure 6.

1. Encapsulated logic for playback of sound files with
groove∼.

2. Capture output from sigmund∼ and encode as OSC.
3. Drive the granular synthesizer with a clock indepen-

dent of the rate of output of sigmund∼.
4. Choose a random frequency from the spectrum us-

ing the amplitudes as a (categorical) probability dis-
tribution.

2 http://crca-archive.ucsd.edu/ tapel/software.html

5. Sonify a grain at the chosen frequency.

1

2

3

4

5

6

Figure 7: Choose a frequency at random using a list of
amplitudes as probabilities.

The module called spec-sample draws a random sample
from the spectrum and is implemented as follows (see fig-
ure 7).

1. Inlet with o.in.
2. Store a copy of the bundle in order to blend derived

data into it.
3. Extract the list of amplitudes.
4. Treat the list of amplitudes as a probability mass

function, convert it to a cumulative distribution func-
tion, and draw a random sample from it.

5. Assign the frequency corresponding to the random
index to the address /freq.

6. Output the bundle, passing through o.out first.

5.1 Visualization

While developing this granular synthesizer, we may want
to visualize its output. Normally, we would construct
something in the main patch, however, such ad hoc work
is often discarded when not needed in order to clean the
patch up and optimize it for efficiency. AOP can assist
here as seen in figure 8. We instantiate o.aspect.receive and
filter any incoming OSC data by looking specifically for
bundles that come from outlets and are sent from patches
called “spec-vis”. We then interleave the frequencies and
amplitudes for display with resdisplay 3 and visualize the
data bound to /freq using multislider.

5.2 Extension and Experimentation

We may wish to add additional behavior to our program,
for example, spectral smearing which we could implement
by adding a random value to the chosen frequency. We
may want to experiment with different families of proba-
bility distributions, and ultimately we may wish to discard

3 http://cnmat.berkeley.edu/downloads

http://crca-archive.ucsd.edu/~tapel/software.html
http://cnmat.berkeley.edu/downloads


Figure 8: An aspect used to visualize the data computed
in spec-sample.

this behavior if it proves to be uninteresting. Rather than
perform many edits on a working patch, we can encapsu-
late this speculative work in an aspect as seen in figure 9.

We first look for OSC bundles that came from the outlet
of the spec-sample patch. We then blend in the name of a
probability distribution and its parameters which is used to
generate a random value that is added to the value of /freq.

Figure 9: An aspect used to experiment with different
probability distributions for smearing the spectrum.

6. CONCLUSIONS AND FUTURE WORK

We have presented an implementation of aspect-oriented
programming for data-flow languages such as Max/MSP
and PD, which can simplify a variety of tasks in arts/media
programming of an agile and speculative nature. We il-
lustrated this implementation with a case study of granular
synthesis development.

Aspect-oriented programming is a relatively recent
paradigm with a growing community of users explor-

ing where it can be effective. Our contribution in this work
is to bring the paradigm to the music and intermedia com-
munities. As well as having noticeable positive effects on
our own productivity we have discovered that this style of
programming requires extensions to the core programming
environments especially in the area of introspection. We
have also found interesting opportunities to extend aspect-
oriented programming afforded by visual programming
environments. For example, it is effective to write aspects
that change the colors of Max/MSP object boxes, text and
patch chords to contextualize state changes and program
flow.

Acknowledgments

This work was supported in part by the TerraSwarm Re-
search Center, one of six centers supported by the STAR-
net phase of the Focus Center Research Program (FCRP) a
Semiconductor Research Corporation program sponsored
by MARCO and DARPA.

7. REFERENCES

[1] A. Cockburn, Agile Software Development: The Coop-
erative Game, 2nd ed. Addison-Wesley Professional,
2006.

[2] R. E. Filman, T. Elrad, S. Clarke, and M. Akşit, Eds.,
Aspect-Oriented Software Development. Boston:
Addison-Wesley, 2005.

[3] “Principles behind the agile manifesto,”
http://agilemanifesto.org/principles.html, accessed:
2014-03-29.

[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. marc Loingtier, and J. Irwin, “Aspect-
oriented programming,” in ECOOP. SpringerVerlag,
1997.

[5] I. Akkaya, P. Derler, and E. Lee, “Aspect-oriented fault
modelling and anomaly detection in Ptolemy II.”

[6] D. Patterson and A. Fox, Engineering Software as a
Service: An Agile Approach Using Cloud Computing.
Strawberry Canyon LLC. Kindle Edition, 2014.

[7] M. Wright and A. Freed, “Open sound control: A
new protocol for communicating with sound synthe-
sizers,” in Proceedings of the International Computer
Music Conference, (Thessaloniki, Hellas), 1997, pp.
101–104.

[8] A. Freed, J. MacCallum, and A. Schmeder, “A dy-
namic, instance-based, object-oriented programming
in max/msp using open sound control message dele-
gation,” in Proceedings of the International Computer
Music Conference, 2011.

http://agilemanifesto.org/principles.html

	 1. Introduction
	1.1 Aspect-Oriented Programming
	1.1.1 Terminology
	1.1.2 Description


	 2. Simple Example
	 3. Applications
	 4. Max/MSP Implementation
	4.1 o.port
	4.2 o.aspect.joinpoint

	 5. A More Detailed Example
	5.1 Visualization
	5.2 Extension and Experimentation

	 6. Conclusions and Future Work
	 7. References

