
TIMEWARP: A GRAPHICAL TOOL FOR THE CONTROL OF
POLYPHONIC SMOOTHLY VARYING TEMPOS

John MacCallum, Andrew Schmeder

Center for New Music and Audio Technologies
Department of Music

University of California, Berkeley
{john,andy}@cnmat.berkeley.edu

ABSTRACT

We present a parametric method for the variable control
of tempo with specification of shape and phase alignment
constraints, and its implementation as a graphical interface
written in C for the Max/MSP environment. This tool aids
in the construction and management of polyphonic streams
of independent, fixed or smoothly-varying tempos suitable
for live performance or computer-generated scores. We also
present a brief history of how polyphonic tempo manipula-
tion has been used in context and compare our work with
two recent projects to implement similar tools.

1. INTRODUCTION

Since the beginning of the 20th century, much composi-
tional energy has been devoted to the exploration of time-
varying tempos and compositions where multiple players
perform in different, but constant tempos. As early as 1930,
Henry Cowell recognized that technology could come to the
aid of the composer/performer who wished to explore rhyth-
mic complexity when he commissioned Léon Theremin to
construct the Rhythmicon or Polyrhythmophone. Notable
attempts to explore this world without the aid of technol-
ogy include Iannis Xenakis’ Pléı̈ades (1979) and Gérard
Grisey’s Tempus ex Machina (1979) both of which require
that the individual performers play in slightly different tem-
pos (as close as two metronome clicks apart!) so that their
parts gradually “slide” apart1.

Another notable work is the third movement of György
Ligeti’s Kammerkonzert (1969–70) in which the conductor
beats a different tempo for each player and leaves them to
continue playing at that speed. The resulting rhythmic tex-
ture is of course completely dependent on the ability of the
conductor to conjure up the correct tempos and that of each
player to continue in the given tempo without deviation, in-
different to the rhythmic chaos surrounding them. In this
case, there is much that the computer could do to aid in

1It should be noted that metronomes now often used to aid in the per-
formance of both Xenakis’ Pléı̈ades and Grisey’s Tempus ex Machina.

the performance of the Kammerkonzert depending on the
goals of the ensemble. One would be right to question the
appropriate level of accuracy—is the piece about machine-
like precision, or man’s struggle to achieve it? Individual
click-tracks for the ensemble and conductor, all set to be-
gin at precisely the same time and hold their tempos with
machine-precision, would satisfy the former, while a sin-
gle click-track in the ear of the conductor that would not
only change tempo, but could perhaps prepare the conduc-
tor with subdivisions that reflect the coming tempo would
leave the matter of precision in the hands of the performers
who would be left to struggle to maintain their tempos.

The tempo canons of Nancarrow beg similar questions
of intent—one should be tempted to ask if Nancarrow would
have preferred the accuracy afforded by the computer, or
whether the slight imperfections in his piano roll would have
suited him better. In either case, the tool that we present in
this paper makes the construction of such canons trivial.

Edmund Campion’s ADKOM (A Different Kind of Mea-
sure) 2 (2001–present, commissioned by the Drumming En-
semble of Porto, Portugal) for percussion quartet, devel-
oped at (CNMAT) with the aid of Musical Systems De-
signer Matthew Wright, requires a separate click-track for
each performer. The tempos in these click-tracks vary over
the course of the piece, at times resulting in extremely com-
plex polyrhythms due to their divergence, and at other times
causing the performers to come into phase with incredible
accuracy that is all but impossible to achieve without the aid
of technology.

Finally, John MacCallum’s . . . almost like hail . . . for
solo percussion and live electronics contains tempo maps
realized by the computer that far exceed the limits of human
performability. These are heard as the performer struggles
to achieve machine-like precision while following his own
tempo map.

2http://cnmat.berkeley.edu/node/7713

http://cnmat.berkeley.edu/node/7713

2. BACKGROUND AND MOTIVATION

The motivation of this work is to provide musicians with
a tool that will allow them to create and perform music in
otherwise impossibly complex and dynamically changing
metronomic relationships to one another. Additionally, we
wish to be able to control the rhythmic phase relationship
between performers at arbitrary points in time (e.g., we may
want to specify that two performers will be an 1/8th or a
1/16th note apart when they arrive at a given tempo—see
figure 4). Although it is simple enough to construct click-
tracks that will gradually change tempo, it is a non-trivial
problem to bring them into some arbitrary polyrhythmic re-
lationship at any given point in time. There are many ways
to approach this problem; in this section, we critique two
recent projects as a way to develop a set of constraints that
we will impose on our implementation.

2.1. Tempocurver

In order to arrive at the desired conditions at the end of a seg-
ment of a tempo map, the tempocurver, written by Matthew
Wright at CNMAT as part of Edmund Campion’s ADKOM
project, holds the starting tempo until enough unwrapped
phase has accumulated that a linear tempo function will sat-
isfy all three ending parameters. This can, depending on
the requested values, produce a delay between the requested
and actual start time that is unacceptably long.

The tempocurver operates on a queue of time, tempo,
wrapped phase destinations and maintains its state as it works
through its queue. This means that in order to start at some
arbitrary time in the middle of the map, e.g. for the pur-
poses of rehearsal, the state at that point must be computed
from the beginning. That may not be practical given a very
large composition with many voices. The queue system also
becomes problematic when one wishes to scale an entire
tempo map. In this case, one would have to operate on the
queue itself which is not currently possible, or edit the data
before it is input into the tempocurver. The ability to scale
the tempo map, either globally or locally is critical when
working with performers who may want to work through a
section at a slower pace for the purposes of rehearsal.

2.2. Timegrid

Schacher and Neukom’s graphical application timegrid [3]
overcomes many of these problems, but a few remain.
timegrid allows for the synchronization of multiple voices
at certain points in time, but does not allow the user to spec-
ify the rhythmic relationship between these two voices. For
example, we may want two voices to arrive at the same
tempo at the same time, but for one to be exactly half a beat
ahead or behind the other. Additionally, the composer has
no choice over the type of curve when editing in this mode—
the user enters points on a grid that represent frequency at a

given time and the algorithm finds a suitable curve that will
pass through all of them. In all other modes, the user must
allow one degree of freedom.

In the mode where the user may draw arbitrary tempo
functions, timegrid does not enforce the use of well-defined
functions, e.g. the user may draw a function that folds back
on itself. Although a loop that is created in timegrid does
not actually cause time to fold back on itself, we believe it
creates confusion where there should be none.

2.3. Goals and Constraints

Polyphonic The tool must be able to support an arbitrary
number of voices that can change tempo smoothly and inde-
pendently. We must also be able to specify the polyrhythmic
relationship between any of these voices at any given time.

Accuracy at all requested points The user-requested state
at a point must be accurate, which is to say that the user
should not have to allow a parameter (time, tempo, position
within a beat) to vary for the sake of the algorithm. The
only degree of freedom we are left to manipulate then is the
shape of the curve itself.

Well-Defined Semantics The system must be consistent
both mathematically and with respect to the user interface.
The tempo is strictly positive and the phase accumulation is
monotonic when time is moving forward.

Possibly discontinuous It can be useful to introduce a
discontinuity in either the tempo or beat functions. As a triv-
ial example, consider a series of steady quarter-note beats.
We may wish to shift the position of these beats by half of a
beat (or some other quantity) without a smooth transition.

Robust We must also allow the user the flexibility to
shape the path through time without having to consider the
underlying algorithm. To this end, the algorithm must never
fail to produce a result even in the case of the most extreme
tempo changes over short durations.

Stateless The tool should be a stateless transfer function
that will permit us to move through the time map at any
global rate we choose. Additionally, we require the ability
to jump to arbitrary points in time.

Signal Domain The output of the system should have ar-
bitrary accuracy and precision with respect to time enabling
sample-accurate calculations in the signal domain.

Functional Composition The output of one temporal
transformation can be used as the input to any other trans-
formation.

Jaffe [2] and later, Wessel et al. [4], proposed a mono-
tonic transfer function that could be used to warp “score” or
“clock” time into “performance” time which is not dissimi-
lar to the tool that we present here. It should also be noted
in passing that this concept of a two dimensional represen-
tation of “score” time versus “performed” time can be of
immense value as an analytical tool for quantifying musical
phrasing. For a thorough review of such topics, see Desain
and Honing [1].

3. METHODS

3.1. Definitions

Let T denote a tempo as the number of beats in a second
(also called frequency). The instantaneous tempo T (t) is
equal to the derivative of the phase, p(t).

T (t) = lim
4t→0

p(t +4t)− p(t)
4t

(1)

We say that a beat occurs when the wrapped phase is equal
to 0

b(t) = δ (p(t)−bp(t)c) (2)

where δ is the Dirac-delta function. (See Fig. 1)

0 2 4 6 8 10 12

0.2
0.4
0.6
0.8
1.0

2 4 6 8 10 12

2
4
6
8
10
12

2 4 6 8 10 12

0.5
1.0
1.5
2.0

Time in seconds

B
e
a
t

f
u
n
c
t
i
o
n

(
w
r
a
p
p
e
d

p
h
a
s
e
=
0
)

U
n
w
r
a
p
p
e
d

p
h
a
s
e

T
e
m
p
o

(
b
e
a
t
s
/
s
e
c
o
n
d
)

Figure 1. Beat, phase, and tempo functions for a fixed
tempo of one beat per second.

3.2. Tempo Warping

A tempo warping function, parameterized by w =
(Ts,Te, ts, te,α,β), changing from tempo Ts to Te over the
time interval [ts, te] with shape parameters α and β is

Tw(t) = (Te−Ts)gw(t)+Ts (3)

gw(t) =

0 t < ts
I(t−ts

te−ts
,α,β) ts ≤ t ≤ te

1 t > te
(4)

where I(t,α,β) is the regularized beta function

I(t,α,β) =
∫ t

0 u(α−1)(1−u)(β−1)du∫ 1
0 u(α−1)(1−u)(β−1)du

(5)

and α and β must be greater than 0. Note that gw(t) is mono-
tonic and bounded between [0,1].

The corresponding warped unwrapped phase function
pw(t) is

pw(t) =
∫ t

−∞

Tw(t)dt (6)

3.3. Tempo Warping With Phase Alignment

Suppose that we want to specify the value of the wrapped
phase to be θ at time te.

(pw(te)−bpw(te)c) = θ ⊆ [0,1] (7)

We then define an error quantity ε ′ that is the amount by
which the function over- or undershot the requested phase.

ε ′ = θ − (pw(te)−bpw(te)c) (8)

To minimize the magnitude of error correction, we select the
alternative having least absolute value of

ε =
{

ε ′,ε ′+1,ε ′−1
}

(9)

so that −0.5≤ ε ≤ 0.5.
To realize the phase alignment, a secondary warping func-

tion is applied over the time interval [te1, te2] ⊆ [ts, te] with
shape parameters αe and βe to account for the value of ε .
The warped, unwrapped aligned phase function, parameter-
ized by w′ = (Ts,Te, ts, te,α,β ,θ , te1, te2,αe,βe), is

pw′(t) =

pw(t) t0 ≤ t ≤ te1
pw(t)+ εg(te1,te2,αe,βe)(t) te1 ≤ t ≤ te2
pw(t)+ ε te2 ≤ t ≤ t1

(10)

4. IMPLEMENTATION

4.1. Interface

This tool has been implemented as a graphical user inter-
face object for the Max/MSP environment that operates on
and outputs a phase signal. Points can be entered into the
space by clicking and dragging them around. Lines repre-
senting a linear change in tempo automatically connect two
adjacent points, and beats are shown as vertical lines that
extend from the tempo line to the bottom of the window.
Each point is made up of two concentric circles, with the in-
ner circle and its position along the y-axis representing the
arrival tempo, and the outer the departure tempo. Arrival
and departure phase are represented by two green triangles
with phase being incremented as the triangles move clock-
wise around the circles. These parameters, and all others
(the values of α and β , the error correction region, etc.)
can be entered numerically or interactively with a pointer.
4.2. Error Visualization

With our object, one can visualize the error correction re-
quirement to realize a phase alignment constraint in two
different ways. The message “show tempo correction” will

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

2 4 6 8 10 12

5

10

15

20

25

2 4 6 8 10 12

0.5
1.0
1.5
2.0
2.5
3.0

alpha, beta = 2
alpha_error, beta_error = 3
start_tempo = 1 (bps)
end_tempo = 3.15 (bps)
start_time = 0"
end_time = 12"
start_phase = 0
end_phase = 0.25
error_correction = [2", 10"]

Time in seconds

B
e
a
t

f
u
n
c
t
i
o
n

(
w
r
a
p
p
e
d

p
h
a
s
e
=
0
)

U
n
w
r
a
p
p
e
d

p
h
a
s
e

T
e
m
p
o

(
b
e
a
t
s
/
s
e
c
o
n
d
)

Figure 2. Beat, phase, and tempo functions (solid = un-
aligned, dashed = aligned, dotted = difference).

show the error correction region as a highlighted area that
can be adjusted by the user, as well as the warped curve
superimposed over the uncorrected curve. The message
“show beat correction” will display a second set of beats
(vertical lines) reflecting their corrected positions in time.
Additionally, the amount of error being compensated for is
output numerically and can be used to minimize the warping
of the curve, i.e. the user could search for a set of conditions
that would result in 0 error.

4.3. Polyphony

An arbitrary number of voices may be created on the fly,
but since the number of outlets a Max/MSP object has is
fixed at instantiation time, we use a simple bussing scheme
via a second object called tw bus∼. A simple two voice
polyphonic tempo map can be seen in figure 4.

5. CONCLUSION AND FUTURE WORK

The tool presented here facilitates the compositional explo-
ration of extremely complex rhythmic textures and struc-
tures in a way that has previously been unavailable. In the
near term, work will focus on use of the tool in a composi-
tional context and especially on the problem of how best to

are shown as vertical lines that extend from the tempo line
to the bottom of the window. Each point is made up of
two concentric circles, with the inner circle and its position
along the y-axis representing the arrival tempo, and the outer
the departure tempo. Arrival and departure phase are repre-
sented by two green triangles with phase being incremented
as the triangles move clockwise around the circles. These
parameters, and all others (the values of α and β , the error
correction region, etc.) are all output to a jit.cellblock object
where they can be edited. See figure 2.

sigmoid ramp from phase 0->0.5

discontinuity in tempo

discontinuity in phase

Figure 2. Tempo editor interface.

5.2. Error Visualization

With our object, one can visualize the error in two different
ways. The message “show tempo correction” will show the
error correction region as a highlighted area that can be ad-
justed by the user, as well as the warped curve superimposed
over the uncorrected curve. The message “show beat correction”
will display a second set of beats (vertical lines) reflecting
their corrected positions in time. Additionally, the amount
of error being compensated for is displayed in the jit.cellblock
window and can be used to minimize the warping of the
curve, i.e. the user could search for a set of conditions that
would result in 0 error.

5.3. Polyphony

Multiple voices can be created on the fly and our object
must be able to support them and keep them separate (i.e.,

Figure 3. The error distributed over the default region (top)
and compressed into a short region (bottom).

it should not merge them the way that objects like poly∼
do). We use a second object called tw bus∼ to manage the
polyphony. A single tw bus∼ object can focus on a single
voice of the timewarp∼.

6. CONCLUSION AND FUTURE WORK

The tool presented here facilitates the compositional explo-
ration of extremely complex rhythmic textures and struc-
tures in a way that has previously been unavailable. In the
near term, work will focus on use of the tool in a compo-
sitional context. We also recognize that machine-precision
is not always musically desirable and plan to implement a
microtiming model that can be applied to its output.

7. REFERENCES

[1] D. Jaffe, “Ensemble timing in computer music,” Com-
puter Music Journal, vol. 9, no. 4, pp. 38–48, 1985.

[2] J. C. Schacher and M. Neukom, “Where’s the beat?
tools for dynamic tempo calculations,” in Proceedings
of the International Computer Music Conference, 2007.

[3] D. Wessel, D. Bristow, and Z. Settel, “Control of phras-
ing and articulation in synthesis,” in Proceedings of the
International Computer Music Conference, 1987.

Figure 3. Tempo editor interface

Figure 4. A simple polyphonic tempo map showing two
points of synchronization.

notate music produced with such a tool. We recognize that
the challenges inherent in the performance of this type of
music may well demand different notational strategies.

As discussed at the beginning of this paper, the ques-
tion of machine-precision is an interesting one, and is not
always musically desirable. With that in mind, we plan to
implement a microtiming model that can be applied to the
output of the object.

Finally, this tool should facilitate more exploration into
the way that we perceive rhythm and tempo.

6. REFERENCES

[1] P. Desain and H. Honing, “Tempo curves considered
harmful,” Contemporary Music Review, vol. 7, no. 2,
pp. 123–138, 1993.

[2] D. Jaffe, “Ensemble timing in computer music,” Com-
puter Music Journal, vol. 9, no. 4, pp. 38–48, 1985.

[3] J. C. Schacher and M. Neukom, “Where’s the beat?
tools for dynamic tempo calculations,” in Proceedings
of the International Computer Music Conference, 2007.

[4] D. Wessel, D. Bristow, and Z. Settel, “Control of phras-
ing and articulation in synthesis,” in Proceedings of the
International Computer Music Conference, 1987.

	1 Introduction
	2 Background and Motivation
	2.1 Tempocurver
	2.2 Timegrid
	2.3 Goals and Constraints

	3 Methods
	3.1 Definitions
	3.2 Tempo Warping
	3.3 Tempo Warping With Phase Alignment

	4 Implementation
	4.1 Interface
	4.2 Error Visualization
	4.3 Polyphony

	5 Conclusion and Future Work
	6 References

